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Abstract
We present a self-consistent field theory (SCFT) for dilute solutions of
semiflexible (wormlike) diblock copolymers, each consisting of a rigid and a
flexible part. The segments of the polymers are otherwise identical, in particular
with regard to their interactions, which are taken to be of an Onsager excluded-
volume type. The theory is developed in a general three-dimensional form, as
well as in a simpler one-dimensional version. Using the latter, we demonstrate
that the theory predicts the formation of a partial-bilayer smectic-A phase in this
system, as shown by profiles of the local density and orientational distribution
functions. The phase diagram of the system, which includes the isotropic and
nematic phases, is obtained in terms of the mean density and rigid-rod fraction
of each molecule. The nematic–smectic transition is found to be second order.
Since the smectic phase is induced solely by the difference in the rigidities,
the onset of smectic ordering is shown to be an entropic effect and therefore
does not have to rely on additional Flory–Huggins-type repulsive interactions
between unlike chain segments. These findings are compared with other recent
SCFT studies of similar copolymer models and with computer simulations of
several molecular models.

1. Introduction

Liquid crystals, being of major importance both on fundamental grounds and for industrial
applications, have long been of interest to researchers [1, 2]. Another class of materials of
considerable interest are melts of block copolymers, which have been shown in recent decades
to exhibit a multitude of phases of varying complexity [3]. This paper will be concerned with
liquid-crystalline copolymers, i.e. copolymers which exhibit phases commonly associated with
liquid crystals.

For the study of nonuniform polymer melts, a particular type of mean-field density-
functional approach traditionally known as self-consistent field theory (SCFT) has proven
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to be a very powerful tool [4–8]. Aside from obvious determinants like the composition
of the melt being studied, the models considered by SCFT approaches differ mainly in two
regards: the flexibility of the polymer chain and the interactions between chain segments.
Most commonly, polymers have been modelled as perfectly flexible Gaussian chains, which
assumes that there is no energy penalty for local bending. Alternatively, the ‘wormlike’ chain
model [9, 10] does introduce such a bending penalty and is thus the appropriate model for
semiflexible polymers. Concerning the interactions, most previous investigators have invoked
Flory–Huggins-type repulsive interactions between unlike chain segments in order to induce
microphase separation and hence the formation of various mesoscopic phases [8, 11, 12].

The aim of the present paper is to develop a modified SCFT suited to examining the
formation of liquid-crystalline phases in athermal solutions of diblock copolymers, each
consisting of a rigid (‘rod’) and a flexible (‘coil’) part. Both parts are modelled as wormlike
chains, but are characterized by different rigidities. For the interactions between any two chain
segments, in this work we do not distinguish between the two parts, i.e. we assume that the
same type of interaction applies to any pair of chain segments. We take this interaction to
be the limit of the Onsager excluded-volume interaction for thin rods, which favours local
alignment of the chains. In the case of homogeneous chains, characterized throughout by the
same rigidity, the present model reduces to that applied by Chen et al [13, 14] to the study
of nematic ordering and the isotropic–nematic interface of semiflexible polymers. As is well
known [13, 15], the Onsager model is based on a second-virial approximation to the free
energy, and hence is strictly valid only for dilute polymer solutions. Here we show that the
generalized model with different rigidities for two parts of a polymer is able to account for the
formation of lamellar smectic-A phases. With this minimal model, the only possible sources
for the formation of such phases are entropic effects. Recently, both smectic monolayer and
bilayer phases (traditionally denoted A1 and A2) have been found in a SCFT-based approach
which includes Flory–Huggins interactions and treats the rigid sections of the polymers as
perfectly rigid and perfectly aligned in the same orientation [16, 17]. In contrast, here we
find only one type of smectic-A phase, which would most accurately be classified as a partial
bilayer phase (denoted Ad). In addition, as in [13, 14], our model accounts for the disordered
isotropic phase.

Liquids of fairly short rod–coil molecules have been examined recently by computer
simulations [18–23]. Generally, these computer studies have shown that the addition of
flexible segments to otherwise rigid molecules stabilizes the smectic-A phase with respect
to the nematic phase, consistent with experimental results for thermotropic non-polymeric
liquid crystals [2]. This behaviour is also shown by the present model, although, in contrast
to some studies [19, 20, 22], we do not find that the nematic phase is entirely suppressed
with respect to the isotropic and smectic phases. Our finding that the only stable smectic-A
of the present model is the partial bilayer Ad phase is in agreement with a density-functional
treatment by Holyst [24] of rigid ‘nail-shaped’ molecules and, somewhat more tentatively,
with Monte Carlo studies by Mazars et al [20] of a rod–coil model.

Experimental studies by Chen et al [25] demonstrated both monolayer and bilayer smectic
ordering in rod–coil diblock copolymers consisting of a highly rigid polyhexyl–isocyanate
block joined to a flexible polystyrene coil. However, these results were complicated by the
simultaneous occurrence of tilted (or smectic-C) ordering and crystallization of the rigid blocks.
These two effects are not considered here, but will be examined in future work.

This paper is organized as follows. In section 2, a detailed description of the theory is
given. In section 3, numerical results are presented, showing the local density and orientational
order-parameterprofiles in the smectic phase as well as the phase diagram of the model in terms
of mean density and rod fraction. We conclude with a summary and discussion in section 4.
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2. Theory

2.1. General three-dimensional theory

We consider a monodisperse solution of n rod–coil diblock copolymers in a structureless
solvent, occupying a total volume V . Each coploymer is characterized by a total contour
length L, polymerization index N and fixed segment length a such that L = Na. A fraction
f of the total contour length of each copolymer is occupied by relatively rigid (rod) segments,
and the remaining fraction by more flexible (coil) segments. The average number density
n/V of copolymers is denoted by ρ. In accordance with the wormlike chain model for
semiflexible chains [9–14], which is applied here to both sections of the chains, polymers will
be treated as space curves ri (t) characterized by dimensionless unit tangent vectors ui(t).
Hence, microscopic contour-averaged density operators may be defined as

φ̂rigid (r,u) = 1

ρ

n∑
i=1

∫ f

0
dti δ(r − ri (ti))δ(u − ui (ti )),

φ̂ f lex (r,u) = 1

ρ

n∑
i=1

∫ 1

f
dti δ(r − ri(ti ))δ(u − ui (ti)),

(1)

which satisfy the normalization conditions∫
dr du φ̂rigid(r,u) = f V ,

∫
dr du φ̂ f lex (r,u) = (1 − f )V . (2)

Since these partial densities are only determined a posteriori and otherwise do not enter the
calculations, we shall instead use the total density:

φ̂(r,u) = φ̂rigid(r,u) + φ̂ f lex(r,u). (3)

The interaction potential between any two segments, i.e. rod–rod, rod–coil or coil–coil, is taken
to be the Onsager excluded-volume interaction, which in the limit of very thin polymers (L,
a � diameter D) reduces to [14]

v(r1,u1; r2,u2) = L2 Dδ(r1 − r2)|u1 × u2|. (4)

This interaction is minimized when contacting segments are parallel, i.e. |u1 × u2| = 0.
Since equation (4) describes the effects of hard-core repulsion between chain segments, at
least at the level of a second-virial approximation [15], here we shall not impose an additional
incompressibility constraint to account for such effects, as is commonly done in the theory of
dense copolymer melts [7, 8].

The partition function in the canonical ensemble has the form

Z =
∫

Dn{·} exp

(
−ρC

∫
dr

∫
du

∫
du′ φ̂(r,u)φ̂(r,u′)|u × u′|

)
, (5)

where

C = L2 Dρ (6)

is proportional to the average polymer number density ρ. In equation (5),∫
Dn{·} ≡ 1

n!

n∏
i=1

∫
D{ri ,ui }P{ri ,ui [0, 1]}, (7)

where

P{ri ,ui [s1, s2]} ∝
s2∏

t=s1

δ[ui(t)
2 − 1]δ

[
ri (t) − ri (s1) − L

∫ t

s1

ds ui (s)

]

× exp

[
− 1

2N

∫ s2

s1

dt ′ κ(t ′)
∣∣∣∣dui

dt ′

∣∣∣∣
2]

(8)
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is the statistical weight of a given path and κ(t) is a dimensionless bending modulus. According
to the model considered here

κ(t) =
{

κrigid , 0 � t < f

κ f lex , f < t � 1.
(9)

As is a standard procedure in SCFTs, we now multiply the partition function by
1 = ∫

D{φ(r,u)}δ(φ(r,u) − φ̂(r,u)), which allows us to replace the operator φ̂ with the
function φ. Then, using the exponential representation of the delta function, the partition
function can be rewritten as Z ∝ ∫

D{W } ∫
D{φ} exp(−F[W, φ]) with

F = ρ

[
C

∫
dr

∫
du

∫
du′ φ(r,u)φ(r,u′)|u × u′|

−
∫

dr

∫
du W (r,u)φ(r,u)

]
− ln

(
Qn

n!

)
, (10)

where

Q =
∫

D1{·} exp

(
−

∫ 1

0
dt W (r(t),u(t))

)
(11)

is the single-chain partition function. The function W (r,u) is identified with the potential
energy, or field, generated by all polymers in the system as seen by a ‘test’ polymer.

Taking the saddle point of the free energy (10) with respect to φ(r,u) and W (r,u), we
obtain the mean-field equations:

W (r,u) = 2C
∫

du′ φ(r,u′)|u × u′|, (12a)

φ(r,u) = − V

Q

δQ

δW (r,u)
. (12b)

In this approximation, the function φ(r,u) equals the statistical average 〈φ̂(r,u)〉 of the
microscopic density. In order to solve these equations for the density, we need to express
Q[W ] in terms of the end-segment distribution function defined by

q(r,u, t) =
∫

D{ri ,ui }P{ri ,ui ; [0, t]}δ(r − ri(t))δ(u − ui (t))

× exp

[
−

∫ t

0
ds W (ri (s),ui (s))

]
. (13)

The function q†(r,u, t) is defined as the end-segment distribution function starting from the
opposite end of the polymer. Hence

Q =
∫

du

∫
dr q(r,u, t)q†(r,u, t), (14)

where the contour variable t is arbitrary. With the above definitions of Q, q and q†,
equation (12b) yields for the local density:

φ(r,u) = V

Q

∫ 1

0
dt q(r,u, t)q†(r,u, t). (15)

The average rigid and flexible densities, φrigid(r,u) and φ f lex (r,u), are given by expressions
analogous to (15) on replacing the limits of integration over t as in equation (1). The end-
segment distribution functions, or propagators, satisfy diffusion-like equations:

∂

∂ t
q(r,u, t) =

[
−Lu · ∇r +

1

2ξ(t)
∇2

u − W (r,u)

]
q(r,u, t),

∂

∂ t
q†(r,u, t) =

[
−Lu · ∇r − 1

2ξ(t)
∇2

u + W (r,u)

]
q†(r,u, t),

(16)
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with initial conditions q(r,u, 0) = 1 and q†(r,u, 1) = 1. Here we have defined the
rigidity parameter ξ(t) ≡ κ(t)/N , depending on the chain contour variable t : ξ(t) equals
the persistence length of the corresponding chain section in units of the total contour length
L [11]. This is where the difference between the rigid and flexible parts of the copolymer is
accounted for.

To proceed with further analysis of the mean-field equations,we represent the orientational
(u) dependencies of the functions φ, W, q and q† using spherical-harmonic series:

φ(r,u) =
∑
l,m

φlm(r)Yl,m(u), W (r,u) =
∑
l,m

Wlm(r)Yl,m(u),

q(r,u, t) =
∑
l,m

qlm(r, t)Yl,m (u), q†(r,u, t) =
∑
l,m

q†
lm(r, t)Yl,m(u).

(17)

Since these are all real functions, the expansion coefficients must obey the following conditions:

φl,m(r) = φ∗
l,−m(r)(−1)m (18)

etc. Next, we expand the kernel |u × u′| by use of the addition theorem for spherical
harmonics [14]:

|u × u′| =
∑
l,m

4π

2l + 1
dlYl,m (u)Y ∗

l,m(u′) (19)

with

dl = 0, l odd, d0 = π

4
,

d2k = − π(4k + 1)(2k)!(2k − 2)!

24k+1(k − 1)!k!k!(k + 1)!
, k = 1, 2, 3, . . . .

(20)

Inserting these formulae into the free energy (10), the latter can be expressed as

F = ρ
∑
l,m

∫
dr

[
4πC

2l + 1
dl |φl,m(r)|2 − Re (Wl,m(r)φ∗

l,m(r))

]
− ln

Qn

n!
, (21)

where ‘Re’ denotes the real part. The mean-field equations (12a) and (15) are now

Wl,m (r) = 8π

2l + 1
dlCφl,m(r), (22)

φl,m(r) = V

Q

∫ 1

0
dt

∑
l′,m′

∑
l′′,m′′

q†
l′,m′(r, t)ql′′ ,m′′(r, t)

∫
du Yl′,m′(u)Yl′′ ,m′′ (u)Y ∗

l,m(u)

= V

Q

∫ 1

0
dt

∑
l′,m′

∑
l′′ ,m′′

q†
l′,m′(r, t)ql′′ ,m′′(r, t)

√
(2l ′′ + 1)(2l ′ + 1)

4π(2l + 1)

× Cl′′ ,l′ ,l
0,0,0 Cl′′ ,l′ ,l

m′′,m′,m, (23)

with

Q =
∑
l,m

∫
dr ql,m(r, t)q†

l,−m(r, t)(−1)m . (24)

The Cl′′,l′ ,l
m′′,m′,m are Clebsch–Gordan coefficients,and we have used a result for the integral of three

spherical harmonics [26]. The corresponding projections φrigid,l,m and φ f lex,l,m are obtained
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likewise by changing the limits of the line integral in equation (23). In terms of the projections
ql,m(r, t), the diffusion-like equation (16) yields the following coupled set of equations:

∂

∂ t
ql,m(r, t) = −L

∑
l′,m′

√
2l ′ + 1

2l + 1

[
C1,l′ ,l

0,0,0

(
− 1√

2

(
C1,l′ ,l

1,m′,m + C1,l′ ,l
−1,m′,m

) ∂

∂x

+
i√
2

(
C1,l′,l

1,m′,m − C1,l′ ,l
−1,m′ ,m

) ∂

∂y
+ C1,l′ ,l

0,m′,m
∂

∂z

)]
ql′,m′(r, t)

− 1

2ξ(t)
l(l + 1)ql,m(r, t)

−
∑

l′,l′′ ,m′,m′′

√
(2l ′′ + 1)(2l ′ + 1)

4π(2l + 1)
Wl′ ,m′(r)ql′′,m′′(r, t)Cl′′ ,l′ ,l

0,0,0 Cl′′ ,l′ ,l
m′′ ,m′,m (25)

with initial conditions

q0,0(r, 0) = √
4π, ql,m(r, 0) = 0, otherwise. (26)

A similar equation applies to q†(r,u, t).

2.2. One-dimensional theory

For simple applications of the general theory presented above, we now specialize to situations
where the densities vary in only one spatial dimension, which for convenience is chosen to be
the z direction. Furthermore, we will restrict analysis to phases that exhibit no azimuthal
orientation dependence about the z axis, thereby excluding the possibility of smectic-C
phases [17, 21]. Then the only nonzero projections of any angular functions are those with
m = 0, so that we will subsequently drop the m indices, denoting φl = φl,m=0, etc. Another
consequence is that now all spherical-harmonic expansion coefficients are real. The free energy
equation (21) becomes

F = ρ A
∑

l

∫
dz

[
4πC

2l + 1
dlφ

2
l (z) − Wl(z)φl(z)

]
− ln

Qn

n!
, (27)

where A is the cross-sectional area of the system in the x and y directions. The mean-field
equations (22) and (23) are

Wl(z) = 8π

2l + 1
dlCφl(z), (28a)

φl(z) = V

Q

∑
l′ ,l′′

∫ 1

0
dt q†

l′ (z, t)ql′′ (z, t)

√
(2l ′′ + 1)(2l ′ + 1)

4π(2l + 1)

(
Cl′′ ,l′ ,l

0,0,0

)2
(28b)

with

Q = A
∑

l

∫
dz q†

l (z, t)ql(z, t). (29)

Finally, the diffusion-like equation (25) becomes

∂

∂ t
ql(z, t) = −L

∑
l′

√
2l ′ + 1

2l + 1

(
C1,l′ ,l

0,0,0

)2 ∂

∂z
ql′(z, t) − 1

2ξ(t)
l(l + 1)ql(z, t)

−
∑
l′,l′′

√
(2l ′′ + 1)(2l ′ + 1)

4π(2l + 1)

(
Cl′′ ,l′ ,l

0,0,0

)2
Wl′ (z)ql′′(z, t) (30)
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with initial conditions

q0(z, 0) = √
4π, ql(z, 0) = 0, l > 0. (31)

In the following, we shall truncate the interaction expansion (19) after l = 2, (equivalent to
a ‘Maier–Saupe’ interaction), retaining only the terms with coefficients d0 = π

4 and d2 = − 5π
32 .

We shall now briefly discuss the computational methods used in solving the theory.
The fields and densities are determined self-consistently according to equations (28a), (28b)
and (30) using a fixed-point iteration algorithm with variable mixing parameters for successive
iterations. An iteration consists of:

(a) given the functions Wl(z), solving equation (30) and its counterpart for q†
l ;

(b) calculating the set of functions φl(z) from equation (28b);
(c) obtaining a new set of functions W ′

l (z) from equation (28a);
(d) mixing W ′

l (z) and Wl(z) according to a fixed-point algorithm, which yields a new Wl(z)
for the next iteration.

Concerning step (a), solutions of the diffusion-like equation (30) were discretized in time
and space according to a forward time centred space (FTCS) scheme [27], which is explicit
and straightforward to implement. This is a reliable discretization scheme for solving partial
differential equations although its error is only first order in the contour discretization dt .
For the corresponding diffusion equation in the case of Gaussian chains, a number of more
sophisticated schemes, such as Crank–Nicholson and DuFort–Frankel [28], are available to
improve on stability and accuracy (the error becomes second order in dt in both cases), and
thus to lower the contour resolution needed for a given desired level of accuracy, a key factor
in computing times. Due to the coupled nature of equation (30), however, it seems daunting
to apply similarly efficient discretization schemes to the wormlike chain model.

Concerning step (d), the fixed-point iteration algorithm used in finding self-consistent
solutions of equations (28a) and (28b) is a tried and tested method. Here viable alternatives do
exist, however, the first and foremost being Newton–Raphson-type algorithms like Broyden’s
method (e.g. [29]). In the present work, we have restricted ourselves to using the fixed-point
algorithm, since our primary aim was to develop the framework presented above and illustrate
it with only a few, demonstrative results.

In the present work, calculations were performed on a one-dimensional grid with periodic
boundary conditions, a spatial discretization of dz = 0.02 and a contour discretization of
dt = 1/1500. The spherical-harmonic expansions of the propagators and densities were
truncated after l = 12. With these parameters, F/V can be determined to within a numerical
inaccuracy of less than 1%, requiring up to 500 iterations, or 3–4 h on a Pentium II processor.
Note that, although the interaction kernel (19) is truncated after l = 2, we cannot truncate
the propagators at the same value of l, since the coupling in (30) renders these higher-order
projections nonzero.

Once equations (28a), (28b) and (30) have been solved self-consistently, the free energy
can be rewritten as

F = −4πCρ A
∑

l

dl

2l + 1

∫
dz φ2

l (z) − ln
Qn

n!
. (32)

For determining coexistence regions of the first-order isotropic–nematic transition, it is
necessary to perform double-tangent constructions on curves of the free energy per volume
F/V . Omitting linear terms in C (which yield constants when the derivative ∂

∂C is taken), we
obtain

F
V

∝ FC

n
= −4πC2

(
A

V

)∑
l

dl

2l + 1

∫
dz φ2

l (z) − C ln
Q

V
+ C ln C, (33)
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where we have used Stirling’s approximation for the factorial. In a smectic phase, all
projections of the local densities and propagators are taken to be periodic functions of z with
period (or layer spacing) d . All integrations over z can then be evaluated as

A

V

∫
dz = 1

d

∫ d

0
dz. (34)

The location of the second-order nematic–smectic transition (cf section 3) is determined by
the behaviour of the smectic order parameter defined as

Osm =
[

1

d

∫ d

0
dz

([√
4πφrigid,0 − f

]2
+

[√
4πφ f lex,0 − (1 − f )

]2)]1/2

. (35)

The parameter Osm vanishes in the isotropic and nematic phases, while it is nonzero in
the smectic phase. For a ‘perfect’ smectic phase in which the profiles

√
4πφrigid,0 and√

4πφ f lex,0 have rectangular shapes of widths f d and (1 − f )d , respectively, Osm has the
value

√
2 f (1 − f ). The equilibrium period is that value of d which minimizes the free energy

per volume.

3. Results

The results presented here apply to a fluid of polymers with ξrigid = 10, and ξ f lex = 0.1. These
values more or less represent the feasible bounds on ξ for performing numerical calculations.
To begin with, we shall examine a system with f = 2/3.

Figure 1 shows the rigid and flexible density profiles (i.e. zeroth-order projections
φβ,l=0(z), β ∈ {rigid, flex}) as well as the total density profile φ0(z) in a smectic configuration
at C = 20, just above the nematic–smectic transition. We see a clearly defined region of
predominantly rigid chain segments and a less pronounced region where the flexible parts are
dominant. The individual density variations are nearly pure sine functions, as expected close
to a second-order transition. The total density in this lamellar structure exhibits maxima in
the rigid regions and minima in the flexible regions. This indicates that the rigid segments
pack more efficiently than flexible ones due to their greater susceptibility to local orientational
alignment. The non-constant value of the total density φ0(z) also reflects the fact that we have
not imposed an incompressibility constraint, as discussed in section 2.

More insight can be gained from the orientational projections of the densities,φβ,l(z). Here
we express these in terms of the z-dependent order parameters defined as, for each degree l,

P̄l,β (z) = 1√
2l + 1

φβ,l(z)

φβ,0(z)
, (36)

equivalent to the average of the lth Legendre polynomial Pl(cos θ) per segment of species
β, where θ is the angle between a segment axis and the z axis. The lowest-order functions
P̄1,β (z) and P̄2,β (z) corresponding to the configuration of figure 1 are shown in figures 2 and 3.
The second-order distribution P̄2,β characterizes the overall degree of orientational order of
species β, while P̄1,β indicates the average spatial direction in which segments β are oriented.
The behaviour of the functions P̄1,β (z) shows that both the rigid and flexible regions are divided
in the middle into domains of positive and negative orientation along z, in the manner of a
bilayer. We see that both P̄2,rigid and P̄2, f lex exhibit maxima (minima) in the regions of high
(low) rod density (cf figure 1). The minimum in the flexible coil distribution P̄2, f lex is more
pronounced, while its maximal region is a slightly modulated plateau within the domain of
high rigid density, suggesting that coil segments are oriented by interactions with neighbouring
rigid segments. Overall, the coils exhibit a much weaker degree of orientational ordering than
the rods.
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Figure 1. Density profiles of a smectic configuration with f = 2/3, ξrigid = 10, ξ f lex = 0.1,
C = 20 and period 1.3L . The full, dotted and broken curves correspond to
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Figure 2. Orientational order parameters P̄1,rigid (dotted curve) and P̄2,rigid (full curve) for the
same case as in figure 1.

The configuration shown in figures 1–3 has an optimal period (i.e. yielding the minimum
free energy per volume) of d = 1.30L for the chosen parameters f = 2/3 and C = 20.
Keeping the same f but increasing C to 30 results in a decrease of the optimal period to
d = 1.24. This is accompanied by stronger segregation of the rod and coil regions and
less purely sinusoidal behaviour of the densities, as shown in figure 4. The corresponding
orientational order parameters are given in figures 5 and 6, and are qualitatively similar to
those for C = 20. We have found that the optimal periods range from 1.1L for f = 0.3
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Figure 3. Order parameters P̄1, f lex (dotted curve) and P̄2, f lex (full curve) for the same case as in
figure 1.
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Figure 4. Density profiles as in figure 1 but for f = 2/3, C = 30 and period 1.24L .

to 1.3L for f = 0.75 for values of C close to the N–Ad transition. Smectic phases with
values of f outside this interval could not be examined due to numerical difficulties. Attempts
to generate solutions corresponding to monolayer smectic structures having d � L always
converged to a uniform (isotropic or nematic) phase.

Figure 7 shows the phase diagram in the C– f plane for rod–coil polymers with ξrigid = 10
and ξ f lex = 0.1. At low mean densities C , the steric interactions do not suffice to generate
an ordered phase: the system is isotropic. Upon increasing C , we encounter a first-order
isotropic–nematic (I–N) transition. The two branches delineating the coexistence region in the
diagram were determined by constructing tangents to the F/V graphs for the isotropic and
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Figure 5. Orientational order parameters of rigid segments for the same case as in figure 4.
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Figure 6. Orientational order parameters of flexible segments for the same case as in figure 4.

nematic solutions with a spline interpolation, which amounts to calculating the values of C at
equal chemical potentials and pressures. The lower f , the higher is the value of C at which
the I–N transition occurs: this transition is driven primarily by the tendency of the rigid-rod
segments to align and thus requires higher densities if the proportion of the rods is lowered.
For f = 1 we can compare our data with that of Chen [13], who uses the full kernel (19)
and obtains an isotropic density of Ciso = 4.18 and a nematic density of Cnem = 5.33. If
we calculate this transition retaining the kernel up to l = 12, we obtain good agreement:
Ciso = 4.16 and Cnem = 5.29. With the truncated kernel (l � 2) used in the majority of this
work, the coexistence region becomes narrower: Ciso = 4.89 and Cnem = 5.35.

A second transition, from the nematic to the smectic (Ad ) phase, occurs at higher values
of C . This transition is second order within numerical uncertainties, as is indicated by the
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Figure 7. Phase diagram for rod–coil copolymers with ξrigid = 10, ξ f lex = 0.1. The isotropic and
nematic phases are separated by a narrow coexistence region bounded by the full and chain curves.
The boundary between smectic and nematic phases is second order, indicated by the broken curve.
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Figure 8. Smectic order parameter versus C for f = 2/3.

behaviour of the smectic order parameter Osm , equation (35). Figure 8 shows that Osm starts
to grow from zero at a well-defined critical value of the density C . There is a minimum of the
N–Ad transition density at roughly f = 0.55. On moving toward both lower and higher values
of f , the critical values of C increase sharply until numerical difficulties prevent us from extend-
ing the graph further. Obviously, a well-balanced proportion of rod-like versus coil-like seg-
ments facilitates forming a smectic phase: the former stabilize the rod-dominatedportion of the
density profile (the nematic microdomain, as it were) and the latter, the coil-dominated portion.
Deviations from the optimal f to higher values of f decrease the entropic advantage of the coils,
which has to be compensated for by an increased density. Lower values of f , on the other hand,
destabilize the nematic microdomain ordering of the rods. This is why, for even lower values
of f , the I–N and N–Ad phase boundaries approach each other until intersecting at f = 0.32.
Below this value of f , the I–N transition is preempted by a first-order I–Ad transition. For
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f = 0.3, we find a coexistence region between Ciso = 29.3 and Csmec = 31.4. Unfortunately,
numerical problems prevented us from examining even lower values of f : it thus remains an
open question by how much the I–Ad transition deviates from the preempted I–N transition.

4. Summary and conclusions

We have presented a SCFT for semiflexible copolymers in a general three-dimensional, as
well as a one-dimensional, form without azimuthal orientational dependence. Using this
framework, numerical calculations have been performed to investigate the occurrence of a
smectic-A phase in systems of rod–coil copolymers where the two parts of each molecule
differ only in their rigidities.

A phase diagram was established for ξrigid = 10 and ξ f lex = 0.1, which correspond to
very stiff rods and very flexible coils. At low reduced density C , an isotropic phase is present,
which becomes nematic for larger values of C via a first-order transition. At even larger values
of C , a partial bilayer smectic-A phase forms, whose period increases with increasing rod
fraction f . The latter effect, while small in the examined parameter range, indicates that the
coils can overlap with other coil segments as well as with the rods, resulting in interdigitation
of the layers. This feature is also suggested by the rather diffuse, sinusoidal variation of the
local density profiles φβ,0. The shape of the smectic phase boundary in figure 7, exhibiting
a minimum mean density C near a rod fraction f = 0.55, is plausible and consistent with
experimental deductions [21] (see also [30]). Preliminary calculations indicate that lowering
the rod rigidity ξrigid shifts all transitions to higher densities C .

In the present work, only anisotropic excluded-volume interactions between chain
segments, assumed to be the same for the rigid and flexible portions of each molecule, are taken
into account. To generate smectic phases, we have shown that it is sufficient to distinguish
rigid and flexible parts of a polymer by means of their rigidities or reduced persistence lengths
ξ , and thus have demonstrated that lamellar ordering is a purely entropic phenomenon. This
is consistent with the findings of computer simulations [18, 20–23] and a density-functional
treatment [24] of diblock models employing only anisotropic repulsive intermolecular forces.
In contrast, the smectic ordering found in the SCFT treatments of [16, 17] is driven primarily
by isotropic Flory–Huggins interactions between unlike chain segments, which may well be
present in more realistic models. Unlike here, the latter works predicted the formation of both
monolayer and bilayer smectic phases, as well as strong segregation between rigid and flexible
domains, which we attribute both to the quite different nature of the interactions adopted
and to the allowance of local compressibility in the present theory: as conjectured in [17],
compressibility effects ‘could dramatically stabilize the bilayer phase’.

Due to our use of the Onsager second-virial approximation for treating repulsive
interactions between polymers, the present theory is valid only for dilute solutions in the limits
that the volume fraction ρVmol → 0 and L/D → ∞ such that C ≡ ρDL2 remains finite and
non-zero [15]. Here Vmol ∝ L D2 is the molecular volume. In previous studies employing
the Onsager approximation [13–15], these limits have been applicable only to the isotropic–
nematic phase transition. The phase diagram of figure 7 shows that smectic ordering induced
by differing rigidities can occur under the same limiting conditions. Figure 7 also indicates that
the values of C at the nematic–smectic transition increase sharply with increasing f , that is,
approaching the limit of homogeneous and fairly rigid chains. This is consistent with studies
showing the existence of smectic phases in such fluids at non-zero volume fraction [31–34].
In this limit the Onsager theory should still be qualitatively valid, but the spatially local form
adopted in equation (4) should be generalized to a non-local interaction in order to generate
smectic phases in fluids of homogeneous wormlike chains [33].
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Future extensions of the theory presented here will attempt to account for the non-
local interactions mentioned in the preceding paragraph as well as for smectic-C phases,
crystallization of the rods and non-lamellar morphologies, all of which are expected to occur
at larger values of the number density ρ and more extreme values of the rod fraction f . To
examine larger densities, higher-virial corrections to the free energy should be taken into
account, for example, by the approach of Parsons [15, 35].
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